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ABSTRACT ‘ i(r)ti;;

A finite difference method for the solution of symmetric posi-
tive linear differential equations is developed. The method is
applicable to any region with piecewise smooth boundaries. Methods
for solution of the finite difference equations are discussed. The
finite difference solutions are shown to converge at essentially
the rate O(hl/z) as h - 0, h being the maximum distance between
adjacent mesh points.

An alternate finite difference method is given with the ad-
vantage that the finite difference equations can be solved itera-
tively. However, there are strong limitations on the mesh arrange-
ments which can be used with this method.

The Tricomi equation can be expressed in symmetric positive
form. Admissible boundary conditions for any region with piece-
wise smooth boundaries are given, with a wide choice of boundary
conditions being possible.

A Tricomi equation with a known analytical solution is solved
numerically as an illustration of the numerical results which can
be obtained. There is strong convergence to the analytical solu-
tions, but pointwise divergence. Smoothing of the solution reduces

this, though, and satisfactory numerical results are obtained.
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INTRODUCTION

In the theory of partial differential equations there is a
fundamental distinction between those of elliptic, hyperbolic and
parabolic type. Generally each type of equation has different
requirements as to the boundary or initial data which must be
specified to assure existence and uniqueness of solutions, and to
be well posed. These requirements are usually well-known for an
equation of any particular type. Further, many analytical and
numerical techniques have been developed for solving the various
types of partial differential equations, subject to the proper
boundary conditions, including even many nonlinear cases. However,
for equations of mixed type much less is known, and it is usually
difficult to know even what the proper boundary conditions are.

As a step toward overcoming this problem Friedrichs [1] has
developed a theory of symmetric positive linear differential equa-
tions independent of type. Chu [2] has shown that this theory can
be used to derive finite difference solutions in two-dimensions for
rectangular regions, or more generally, by means of a transformation,
for regions with four corners Jjoined by smooth curves. In this
paper a more general finite difference method for the solution of

symmetric positive equations is presented. The only restriction on



the shape of the region is that the boundary be piecewise smooth.
It is proven that the finite difference solution converges to the
solution of the differential equation at essentially the rate
O(hl/z) as h=- 0, h being the maximum distance between adjacent
mesh points for a two-dimensional region. Also weak convergence
to weak solutions is shown.

An alternate finite difference method is given for the two-
dimensional case with the advantage that the finite difference
equation can be solved iteratively. However, there are strong
limitations on the mesh arrangements which can be used with this
method.

As an example of the potential usefulness of the theory of
symmetric positive equations, the Tricomi equation

Yy = Py = £(x,¥)
can be expressed in symmetric positive form. It is shown that
suitable boundary conditions can always be determined, regardless
of the shape of the region. The problem in a practical case is to
determine an "admissible" boundary condition which corresponds to
avallable boundary information.

As an illustration of numerical results which can be obtained
by the proposed finite difference scheme, a Tricomi equation with
a known analytical solution is solved numerically. The results in-
dicate that, although there is strong (i.e., L2) convergence of the
finite difference solution to the analytical solution, there is

pointwise divergence along the boundary. However, smoothing the



solution can eliminate this problem, and satisfactory numerical
results are obtained, although rigorous mathematical justification

of the smoothing process is not given.



CHAPTER I

SYMMETRIC POSITIVE LINEAR DIFFERENTIAL EQUATIONS

1.1 Basic Definitions

Let & be a bounded open set in the m-dimensional space of
real numbers, R®. The boundary of £ will be denoted by 0, and
its closure by Q. It is assumed that oQ is piecewise smooth.

A point in R™® 1is denoted by x = (x7,%p, - - ., Xp) and an
r-dimensional vector valued function defined on Q is given by
u = (u;,up, . « ., uy). Alsolet al,a®, . . . , ™ and G be
given r X r matrix-velued functions and f = (fl,fz, v ey fr)
a given r dimensional vector-valued function, all defined on
(at least). It is assumed that the ol are piecewise differen-

tiable. For convenience, let o = (al,a®, . . ., o), so that we

can use expressions such as

m
5 .
v (au) = Sxo (alu). (1.1)
i=zl 1

With this notation we can write the identity

m 3 . m o mo 3u
2w W= Y S D et ey
i=1 i=1 i=1
simply as
Vel law) =(V:a)u+a - v (1.2)



With this we can give the definitions for symmetric positive
operators and admissible or semi-admissible boundary conditions
which were introduced by Friedrichs [1].

Let K be the first order linear partial differential opera-
tor defined by

Ku=g* Y+V - (qu +Gu (1.3)

K 1is symmetric positive if each component, ai, of a is symmetric

and the symmetric part, (G + G*)/z, of G 1is positive definite on
on Q.
For the purpose of giving suitable boundary conditions, a
matrix, B, is defined (a.e.) on 9Q by
B=n "'« (1.4)
where n = (nl,nz, o e ey nm) is defined to be the outer normal
on ofQ.

The boundary condition Mu = 0 on 00 is semi-admissible

if M=y - B, where p 1is any matrix with non-negative definite
symmetric part, (u + u*)/2. If in addition, NWMp - g)oN(n + B) = R
on the boundary, o2, the boundary condition is termed admissible.
(n(u - B) is the null space of the matrix (p - B).)
The problem is to find a function u which satisfies
Ku=f on Q
} (1.5)
Mu=0 on oQ
where K 1is symmetric positive.
It turns out that many of the usual partial differential equa-

tions may be expressed in this symmetric positive form, with the



standard boundary conditions also expressed as an admissible bound-
ary condition. This includes equations of both hyperbolic and ellip-
tic type. However, the greatest interest lies in the fact that the
definitions are completely independent of type. An example of
potentially great practical importance is the Tricomi equation
which arises from the equations for transonic fluid flow. The
Tricoml equation is of mixed type, i.e., it is hyperbolic in part
of the region, elliptic in part, and 1s parabolic along the line
between the two parts.

The significance of the semi-admissible boundary condition
is that this insures the uniqueness of a classical solution to
a symmetric positive equation. On the other hand, the stronger,
admissible boundary condition is required for existence. The
existence of a classical solution is generally difficult to prove
for any particular case, and depends on properties at corners of
the region. However, it is very easy to prove existence (but not
uniqueness!) of weak solutions with only semi-admissible boundary
conditions.

1.2 Basic Identities and Inequalities

Let H# be the Hilbert space of all square integrable
r-dimensional vector-valued functions defined on . The inner
product is given by

(u,v) = Jr u v (1.6)

Q



where

and
lall® = (o)
A boundary inner product is defined by
(U-,V)B = f u - v
on
with the corresponding norm
Juld = ()
We introduce now the adjoint operators K*
defined by
K*u = o -

M = (W + B)u

W - V- (qu) + G*u

(1.7)

(1.8)

(1.9)

and M*, which are

(1.10)

(1.11)

The relation between K and M and their adjoints is gilven

by Friedrichs "first identity."

Lemma 1.1 If K

(v,Ku) + (v,Mu)p = (K*v,u) + (M*v,u)p

Proof - The proof follows from Green's Theorem.

have

is symmetric positive, then

(1.12)

By definition we



m
=2f Zé%i-(\r'aiu)
q i=1

since the oci are symmetric. Therefore
(v,Ku)-(K*v,u):Zf n-(v-a,u)=2f v - Bu
o0 oQ
by Green's Theorem, and since B =n * a. Finally
(v,Ku) - &*v,u) =f (b*v - u+Bv * u-v * pu+v - Bu)
: on
=(M*v,u)B - (v,Mu)g
which proves the lemma.
The "first identity" can now be used to obtain Friedrichs
"second identity."
Lemma 1.2 If K is symmetric positive, then
(u,Ku) + (u,Mu)B = (u,Gu) + (u,uu)B (1.13)
Proof - It follows from the definitions of K* and M* that
K+K'=G+G*¥ and M+ M* = + u¥; hence, letting v =u in

the "first identity," we obtain
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(u,Ku) + (u,Mu)B %[Ku,(K + K*¥)u) + (u,(M + M*)u)ﬁ]

¥ +
(u, G ; G u) + (u, “'2__._“'__ u)
B

(u,Gu) + (u,uu)p

The "second identity" immedistely yields an inequality which
will glve us an a priori bound and insure uniqueness of any
ciassical solution to a symmetric positive equation with semi-
admissible boundary conditions.

Lemma 1.3 Suppose u 1is a solution to (1.5) where M is
semi-admissible. Let AG be the smallest eigenvalue of

(G +G*)/2 in Q. Then
full s L ||£] (1.14)
s

Proof - Since K 1is symmetric positive, Az > O, and therefore

”u||2 ] (u,Gu)/AG. Using Lemma 1.2, since pu + p*¥ is non-negative
definite by the assumption of the semi-admissible boundary condi-

tion, we have

2
lull® = = [ku,Gu) + (u,uu)ﬁ] = L (u,Ku),
el "

since Mu = O, so that

2 1 1
[Fall™ € 5= flall lxul = 5=l l=]

i g

One other inequality can be cbtained for [lu|gz by assuming
that oy + p¥ 1is positive definite.

Lemma 1.4 Let u satisfy equation (1.5) where M is semi-
admissible. Further, assume that (u + u*)/2 is positive definite

on o0 with smallest eigenvalue Xu. Then
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g = —=— £l (1.15)

Vg

Proof - From the hypothesis,

2¢1 1 = 1
hallg = 5= (o) & = [(w,uu) + (u,6u)] = = (u,Ku)

L
1 1 2
< = [lull Kull < 5= [I£]

by Lemma 1.3.

1.3 Uniqueness of a C; Solution

Lemma 1.3 insures the uniqueness of a classical solution, and
also that it is well posed in L2 for homogeneous boundary condi-
tions.

Theorem 1.1 If uECl(Q) satisfies equation (1.5) where M is
semi-admissible, then u is the unique solution to (1.5). Further
(1.5) is well posed in the sense that for any € > O there exists
a &> 0 such that 1f f is replaced by f. in (1.5) with
£, - £ll <5, and if a solution ue still exists, then |juc - ul|<e.
Proof - Suppose that veC;(Q) is any solution of (1.5), then
K{u -v) =0, M(u -v) = 0 is semi-admissible and by Lemma 1.3,
lu - v|| = 0. For the second part let & = Ag€, then

K(ue - u) = f¢ ~ £, Mlue - u) = 0,

hence

ue -l < & fize - o < ¢
G

Actually piecewise differentiability of u is adequate for

the above theorem provided u is continuous. This follows easily
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since, when Green!s theorem is applied, the values of u along the
discontinuities of the derivative will cancel, providing us with
all the previous results.

1.4 Weak and Strong Solutions

By widening the class of solutions to (1.5) to include weak
solutions it is quite easy to prove existence of a solution to a
symmetric positive equation under only semi-admissible boundary
conditions. We will use Friedrichs' definition of weak solution.
Let V = C1(Q) n{le*v =0 on 69}. A function ueH (defined in
section 1.2) is a weak solution of (1.5) if fel and for all vev

(v,f) = (K*v,u) (1.16)

It follows from the "first identity” (1.12) that a classical solu-
tion is also a weak solution.
Theorem 1.2 If M 1is semi-admissible, there exists a weak solution
to (1.5).
Proof - Let 2# be the subspace of all functions w, where w = K'v
with veV. Since K* is symmetric positive and M* is semi-
admissible, Theorem 1.1 implies that v is unique for any given
w. Hence, for any fixed fGH, we can define a linear functional
Ly, defined onHC 8 by

Le(w) = (v,f).

This linear functional is bounded, since

| (v, 2] = vl lle]) = i Il flwl

by Lemma 1.3 applied to K* ana M¥. By the Hahn-Banach theorem



1z

Ly can be extended to all of QH, and by the Riesz representation
theorem there is a uel such that
(v,f) = (w,u)
which proves the theorem.
This only shows that uﬁﬂ, however, if uGCl(Q), we see from
Lemma 1.1 that

(v,ku) + (v,Mu)g = (K*v,u) + (M*v,u)

I

(v,f) for all veV.

Hence (v,Ku - f) = 0 if v =0 on 0OR, so that we must have
Ku=f in Q. This in turn shows that (v,Mu)B must be zero.
Friedrichs [1] shows that if, in addition, M is admissible, then
Mu = 0. The conclusion then is that & weak solution which satis-
fied admissible boundary conditions and is continuously differentia-
able is also a classical solution to (1.5).

A function ueH is a strong solution to (1.5) if there exists

a sequence <§§} of functions such that each uleC;(Q) and

TRt -l + et - ]+ Mutfg) = o

=200
Variations of the definitions of weak and strong solutions are
common (cf. Sarason [3]). 1In general it is not known whether a
weak solution is differentiable; it is, however, possible, under
certain additional hypotheses, to show that a weak solution is also
a strong solution. One hypothesis used by Friedrichs [1] is that
o has a continuous normal. Sarason [3] considers the case where

00 is of class CZ' Sarason also considers the two-dimensional
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case with corners, which requires special conditions to be satis-
fied at the corners. Other "weak=strong' theorems are given in
Sarason [3], Lax and Phillips (4], and Phillips and Sarason [5].

1.5 A Simple Example

An illustration of the types of boundary conditions with more
or less boundary data than usual can be given by means of a one-

dimensional example. Suppose that
Ku=2xg'x_u+2u=0 for -1 x5 1 (1.17)

If we write K in self adjoint form

Ku:x%}%'{-d_(?ﬂ-{-u

dx
we have aq =x and G =1, so that K is positive symmetric. At
x= -1, B=nou= -x, and we can let pn = IBI = -x. Hence

M=y « =0 and no boundary condition is imposed at x = =l.

At x =1, B=x, and letting p = IBI, we have again that M= O,
and no boundary condition is necessary at the right end either.
Thus, for equation (1.17), no boundary condition at all is an
admissible boundary condition' To see that this is so, we can
calculate the solution to (1.17). Since Ku = 2 d(xu)/dx = 0, we
have xu = c, as the general solution. However, the theory is con-
cerned only with solutions in I2(-1,1), and u = c/x is square
integrable only for c¢ = 0, so we do indeed have a unique solution
in Lz(-l,l) without specifying any boundary data at all.

A simple example can also be given of an ordinary differential

equation which requires more boundary data than usual. For this let
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Ku = -2x =— = =2 (1.18)

In self adjoint form
Ku = -x =

so that @ = -x and G = 1. In this case if we make p = ||,
we get p = -B, so that M=pu - B= 2, at both x =1, and

x = -1. Hence, boundary data must be specified at both end
points for admissible boundary conditions. Again, we can check
this by solving the equation. The general solution to (1.18) is

u = log|x|+ec

1
Since / ' 1og2 x < 9 we see that we have a valid solution for
0
any c. Also, because of the singularity at x = 0, we can

specify the value of u at both x=1 and x= -1.



CHAPTER II
FINITE DIFFERENCE SOLUTION OF SYMMETRIC POSITIVE

DIFFERENTIAL EQUATIONS

2.1 Finite Difference Approximation to K and M

First we will express KX in a form slightly different from
(1.3), by the use of (1.2). We have

Ki=q * Va +V « (qu) + Gu

1l

2V ¢« (au) - (V * @) u + Gu (2.1)
Using the concept of vectors whose components are themselves

matrices or vectors leads to somewhat simpler notation for the

application of Green's theorem.

Lemma 2.1 (Green's Theorem) Let g be a continuously differentia-

ble m-dimensional vector-valued function defined on  C R®, with

vector components in either R, R¥ or RY X RY. Then

fV°g= g'n (2-2)
Q on

Proof - Consider the case when g has matrix components, i.e.,

g =‘(gl,g2, e vy &™) where gt o= (gg,k) is an r X r matrix.

m
fV‘g= Z%(gi)
9 h 1=l ;

15

Then
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is a matrix. Using the subscript Jj,k +to indicate the element in

the jth row and kth column, we have

m
= ) i
cgl o, = L) = V- og,
V©glik z 3 ik (V- gy
| i=1 ,
Q Q 0

(using obvious notation); therefore

js;(v'g)j’kf Lo e =(ao . n)j,k

Similarly, the result holds when g has vector components, SO
the lemma is proved.
We now integrate the equation Ku = f over any region P C @

using (2.1) and Green's theorem to obtain

fPKu ‘/P:EZV'(au)-(V'a)u+Gla
=2./;Pa,u-n—j;(v-q)u+./1; Gu =

ZaPBu-j;(V’a)u+/; Gu=./;f (2.3)

By a suitable approximation to (2.3) the desired finite difference

equations will be obtained.
Let H be a set of N mesh points for . It is not required
for the theory that the mesh points all lie in . With each mesh

point xj€H we identify a mesh region, Pj CQ by

-

g
|

|x -le< | x - Xy, Vxy€H, k # J; xﬁ}



17

J
(corresponding to the fact that the directed graph of the resulting

It Pj is adjacent to P we say that x; 1is connected to Xy

matrix will have a directed path in both directions between j and
k, see p. 16, [6]). Let Zj,k = Ixj - Xyl where Xj is connected
to xy, and let h = max Zj,k' Now define Aj to be the "volume"
of Pj and Lj,k to be the "area" of the r - 1 dimensional
1n 1" - B k=y >

surface between Pj and P,. We put Pj,k = Pjr\ Pp. Figure 1
illustrates mesh points and corresponding mesh regions for two

dimensions. This concept of mesh regions is based on the sugges=

tions of MacNeal [7]. We will always use the notation jE: to indi~

J
cate a sum over all points, xj, in H, and :é: to indicate a sum

over points, Xy, which are connected to some one point, Xje
The desired finite difference eguation can now be obtained by
a suitable approximation to equation (2.3). We use the symbol =
to indicate the discrete approximation that will be used for each
expression. First
u. + u
= T. . k
‘/1: pu = LJ,kBJ,k -%— (2.4)
J,k
where u; = u(x;) and B, k is the value of B for P. at the
J J Js J
center of Pj,k' (Note that Bj,k = = Bk,j)' The approximation
to the next term of equation (2.3) requires approximating u with

u; first, and then applying Green's theorem before approximating

J
a. With this we obtain



Figure 1. - Typical mesh regions in the two-dimensional case.
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./. (V . a)u :

b, _/1:. (v - cx.)uj %'/B-Pj Bu (2.5)

J

The final approximation is then

[,

Jsk

ofe

Equations (2.4) and (2.6) take care of the integration over the
interface between any Pj and Pk’ Now we need to make an approxi-
mation for the boundary sides. It will be convenient to be able

to subdivide f% (N30 into more than one piece. We will label

each piece Pj,B and we will use the convention that :%: will
mean a summation over the B for just one Jj. We use lj,B to
denote the distance from X to xp, where xp is located at the
"center" of Py,p and Ly g is used for the "area" of s

Also Bj,B = B(xB). This notation is indicated for the two-

dimensional case in Figure 1. The desired approximations are now

given by
‘/1: Bu = Lj’BBJ.,BuB (2.7)
J,B
./I: Pug * Ly,8P3,8% (2.8)
J,B

Finally the remaining terms in equation (2.3) are approximated by

L
f Gu £ AsGyuy (2.9)
Fs
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f £ = Ayfy (2.10)
F3
where Gj = G(xj) and £y = f(xj). Also we can approximate J/.Ku
by
[ 2oy, (2.11)
b

where Kh is the finite difference operator to be defined and
which will approximate K. Using approximations (2.4) to (2.11)

in equation (2.3) we arrive at the following definition of Ky, s

Aj(Khu)j

z Ly kB, x(uy + u) +2 Z L BBj,BUB
k B
- Z Lj,xPj,x43 - g Lj,BRs,BYy + B3G5y

= Z Lj,kBj,kuk+Z Lj,BBJ-’B(ZuB -»uJ-) + AjGju,j (2-12)

where u here denotes a discrete function defined on H = H L)(%é},
and uj = u(xj). We will seek to find a function defined on H

and satisfying (Khu)j = fj for every xjeH, Of course the solution
is not yet uniquely determined since there are more unknowns than
equations. The boundary condition Mu = O will furnish us with
the necessary information to determine u uniquely on H (but not
necessarily on all of H).

Using M, to denote the boundary operator used to approximate
M, we make the following definition

(Mhu)j,B = Hj,Bj - Bj,B(ZuB - uj) (2.13)

!
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for all Jj where Pj is a boundary polygon, and for all boundary
surfaces of Pj (each of which is associated with a point xg). It
is easily seen that M, is comsistent with M (i.e., (Mhu)j’B-»
Mu(xj’B) as h- O if u is continuous). The reason for this
choice of M, is that the condition Mhu = 0 can be used to
eliminate ug in Kuyu in a simple manner, and also we will be able
to prove basic identities for the finite difference operators
analogous to those for the continuous operators (egs. (1.12)

and (1.13)).

2.2 Basic Identities for the Finite Difference Operators

The existence and unigueness of a solution to the finite
difference equation and the convergence to a continuous solution
as h -+ O depends on proving the basic identities for the dis-
crete operators. Let ‘Hh be the finite dimensional Hilbert space

of discrete functions defined on H. The inner product is given by
(w,v)y = JZAJ-uJ- © VixgeH (2.14)

and

bl = (w,u)y, (2.15)

Also a "boundary" inner product is given by

(u,v)Bh = :;: :é: Lj,Buj,B " V3B (2.16)

for Pj a boundary mesh region, and

Rl = (w0

By By

(2.17)
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The discrete adjoint operators Kﬁ and Mﬁ are defined in

the obvious way,
: = - L, ,B.:" --ZZ L, . 2 -u,) + A.G¥u, 2.18
Ay (), Z 3,685,607 4 By, BBy, (B0 - Uy) ARy (2.18)

u), o= uf u,+p, (2u, - u, 2.19
() )J,B J,BJ BJ;B( B J) ( )
We can now give the "first identity" for the discrete operators.

Lemma 2.2 If K is symmetric positive, then

(v,K'hu)h + (V’Mhuhﬁl= (Kﬁv,u)h + (Mﬁv,u)Bh (2.20)

for any functions u,v defined on H.

Proof - Using the definitions, equations (2.12) and (2.18), we have

(v,Khu)i1 - (Kfv,u)y g Evj . Aj(Khu)‘j - AJ(K.;I"V)‘j . uj]

jz[z La,KYs T B,k

: -~u;) *Avs - Geus
* iZLJ:BVJ By, mlBug = uy) ¥ Agvy - Gyus

* ZLj,kBJ,k"k g
k

+ . B+ - V.) * u. - AG¥V. ¢ u.
ZLJ,BBJ,B(ZVB Vi) T ouy - AgGRvy ua]

By rearrangement, since Bj,k_= 'Bj,k: and since Bj,k is symmetric

we have
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Z Z Ly, kP, xVk "YUy = ZZ Ls,xPx, Vs~ k= 'ZZLLKVJ "By, K%k

J J

and we see that all terms cancel with the exception of the boundary

terms, so that

(v,Kpu)y - (Kfv,u)y = 2 Z LJ,B(VJ " By, p(2ug - uy)
+ B, pl2v, = v,) " u, 2.21
BJ,B( B J) J) ( )
On the other hand, using equations (2.13) and (2.19)
- = L. * . ocou, + -v.)* u.
(Mi’;\r,u)Bh (V’M’hu)Bh Z EB: J,B(“J,BVJ uy BJ,B(ZVB vJ) uJ)
~ - 2 Z LJ,B<"J T Hy,EY Yt By,B(2up - uj))
which is the same as the right side of (2.21). Hence the "first
identity" for the difference operators is proved.
The discrete operators have been defined so that Kh + Kﬁ =
G+G* and M + M=y +u¥ By letting v=1u in (2.20) we
can prove the discrete "second identity"” exactly as for the con-
tinuous case (Lemma 1.2).
Lemma 2.3 If K 1is symmetric positive, then

(u,Kpu)y, + (u,Mhu)Bh = (u,Gu)y + (u,pu)Bh (2.22)

2.3 Existence of Solution to Finite Difference Equations

Using equation (2.13) and Mu = O we can eliminate ug from

equation (2.12) so that the equation Kpu = f can be reduced to
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12 Ly, kP, k% g Ly, By, BYy * AG5uy = ATy Y (2.23)

If we consider the case when { 1is two-dimensional and rectangular,
and the Pj are all equal rectangles, we can compare (2.23) with
the finite difference equation obtained by Chu [2]. The equation
obtained by Chu is the same as (2.23) for interior rectangles, but
is different for boundary rectangles.

Let A be the rN X rN matrix of coefficients of (2.23).
Letting (u,v) = /g'uj>. vj, the ordinary vector inner product, we
have

(w,Au) = (w,Ku)y, + (u,Mhu)Bh (2.24)

Hence, by the "second identity" (2.22), A has positive
definite symmetric part which shows that A is non-singular. We
can also obtain an a priori bound for Hu“h Just as in the con-
tinuous case.

Lemma 2.4 Suppose u 1is a solution to

Khu:-' f, Mhu= 0

where K is symmetric positive and M is semi-admissible. Then
1
lull, s = il (2.25)
h G h

If in addition, (u + p¥) is positive definite on 89, then

“u”Bh s —— |Itlly, (2.26)
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Proof - The proof is identical to that for Lemmas 1.3.and 1.4, .
but using the h norms and inner products.

2.4 Caonvergence of the Finite Difference Solution to a

Continuous Solution

It is possible to show that the solution of the finite differ-
ence equation (2.23) converges strongly to a continuously differ-
entiable solution of equation (1.5), under the proper hypotheses.
For simplicity we prove convergence only for the case when Q 1is
two-dimensional (m = 2). Extension to regions in higher dimen-
sions, with the same rate of convergence, follows directly. To
allow the type of comparison we wish to make we will define
operators mapping H  into ‘Hh and vice versa. Let ¢ H *‘Hh
be the projection defined by
5= u(xj) for all x,eH (2.27)
In the other direction, let py: ‘Hh -H Dbe an injection mapping

(ryu)

defined by

phuh(x) = (uh)j’ for all xer (2.28)

We immediately have the following relations,

rhph = T (2.29)

loupll = llupll, for all wey (2.30)
We can now state our basic convergence theorem for two-dimensional
regions.

Theorem 2.1 Suppose that ueC2(Q) satisfies

Kun=f on QCR2

Mu=0 on oQ
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where K is symmetric positive, and p + p* is positive definite
on off. For any given h > 0, let Hy, be a set of associated
mesh points such that the maximum distance between connected

nodes is less than h and also that Lj,k’ Lj,B and |x - xj|

¢

for xer are all less than h. It is assumed that the mesh is

sufficiently regular so that hz/Aj for each Pj is bounded
independently of h by a constant Kj; > O, which is possible for
sufficiently nice regions. Also it is assumed that a uniform
rectangular mesh is used for all Pj any point of which is at a
distance greater than Koh from 3R, where Ko 1is a positive
constant. It is assumed that aecz(ﬁ).

Let uheHh be the unique solution to

Ky, = rp,f on Hy
Mu, =0

Then “phuh -yl = 0(hY) as h- O for any positive v < 1/2.

Chu [2] proved convergence of his finite difference scheme,
where § 1is a rectangle or a region with four corners, but the
rate of convergence was not established.
Proof - Define w, = w, - ryu. Let Ny be the smallest eigen-
value of (G .+G%)/2 in Q. Using the "second identity" (2.22),

we have
”Wh“%g-)% Ewh,GWh)h +(Wh’“Wh)Bl,]= %G, [(Wh,KhWh)h +(Wh,MhWh)Bh]

Using the Cauchy-Schwartz inequality, we have



27

lwliE < i— (gl Ml + lhogll, I¥wmyllg ) (2.31)

We will show that [[Kow [, = O(n1/2) and [Myryllp, = O(k), s 0.
We shall need the following lemma.

Lemma 2.5 Let g be a function defined on a finite region PCRZ,
and suppose that g satisfies a Lipschitz condition, i.e., there
is a constant Kz > O such that |g(x) - g(y)| < Kz|x - y|,

for all x, yeP. Then, if A, is the area of P and IX"XOI <h

g(xo) - }Tl- g(x)
-/

in P,
- < Kzh

Proof - By direct calculation

Y 1 "1
gxg) -5 | @)= 52| [ (alxy) ~e@)| S5 [ Kalx-x| <Kgn

o o] o]

P P P
We proceed now with the proof of the theorem. Let Q; denote

that portion of Q consisting of those P‘j which are rectangular,
and let Qo denote the rest of the Pj. From the hypothesis we
see that the area of (o, 1is less than the length of oN times

Koh. We have now that

2 = 4 <phxhwh>?+é (oK) ?
1 2

=Zf (Ku(xj)—(Khrhu)J.)2+

Jedy o JeJz *p.
i 3

where

gy = lpyCagy, 1= 1,2
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To simplify notation we will use wuy for u(x;) and ug for u(xB).

J

We now obtain a suitable bound for |Ku(xj) - (Khrhu)j[

lKu(xj)

: L. L.
E JoK E: B
+ - B. kuj + J_;_. Bj Bu - Gjuj

- (Kprpu) 3| = [29° (am)(x3) - (V- a)ulx;) + Gyuy

L- L
- Lk } '2' i,B
z A, Bj,k (uj * uk) 2 N, Bj,BuB
xk Y B9

k J
+ (v adulxy) ZEM o (2.33)
WM LAy Pyt LA By, B -

k B

Consider the first term in the last expression above

2V -

L. L
au) (x3) - z 1‘_]\; BJ kluy +uy) -2 z —%S-E Bj,BUB
k B

< |ev (onu)(xJ)-%/; v+ (au)
J

1

il DI BT S CPR
k .
Jrk

I AR

B 1j,B

* K]:- Z f Bj,k(zuj,k-(uj +u-k)) (2.34)
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By Lemma 2.5, since o and uecz(ﬁ) imply that their derivatives

satisfy a Lipschitz condition,

= 0(h) (2.35)

ev- (aw)(xs) - = [ v+ (a)
P

[}

J
We consider now the case when jeJl, so that Pj is a

rectangle with X5 at the center.

Since ueC2(Q), we have

13,k ! li,k
. = . - . +
uy = Uy oy _%f_ uj T%?E u (gl)
2
. 1z
1 L3

_ k kK n
R e e B IR ¢y ALY
where the derivatives are directional derivatives in the direction

X = Xso Hence, if |u"| < KS. in Q, we have

Kz 2
This means that
. s
[ BB - oyt | S By 18l T2y, - g | = o)
T3,k
(2.386)
when jeJy.

We now examine a Taylor series expansion for pu about the

i . =\x. + ’v.
point X5,k (XJ xk)/z
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"

. . .
B(Xj,k + tz)u(xj,k + tz) (Bu)j,k + t(ag ([3,1,1))3,k + 5 g(el)

(2.37)

2
B(xj,k - tZ)u(Xj’k - tZ) (Bu)j’k g t(d_(?'t' (Bu))j’k + t_z- g(gz)

where 2z 1is a unit vector orthogonal to x.

3 T Xgo t 1s a scalar

parameter, g(&) = (g;(&;),83(85), - - -, g.(€.)), gy is the ith

component of the vector d2/dt2 (Bu), and €; 1is a point on the
straight line between X5k +(Lj,k/2)z and xj g - (Lj,k/2)z,

Using (2.37) we obtain the following bound,

-/1: pu - (Bu), o
3ok

fL‘j"k/z' (B(xg y *+ t2)ulxy y +
A B X5k tz)u X5 Kk tz)

+ B(Xj’k - tz)u(xj’k - tz) - Z(Bu)j’k)dt

L. /2
< f LA 2K, dt = 0(nd) (2.38)
0

Now, using (2.35), (2.36) and (2.38) in (2.34) we obtain

IZV'(au)(xj) - z Ii%;-li Bj,k(uj +u )| = 0(n) (2.39)
k

for all JjeJ,, since hZ/Aj < K; and the boundary terms are not

present.

Consider now the second term on ‘the right of (2.33):
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' L. L.
) - K g, . - J,B g, .
(V- a)ulx;) E '%? B3, K% 2 s PsBY
7 B

< |V a.)u(XJ 'Z\l—. / (Vea)u +Il-f (V'a)(u-uj)
J P, 3 |7p.
J J
+Kla'z f (p- BJ,k)uj“‘z f (B-Bj,Bluy (2.40)
k Fjjk B Pj,B
By Lemma 2.5

(¥ -+ a)ulx;y) 'Klff (v+a)ul = o(n) (2.41)

J p

J
Next, since u satisfies a Lipschitz condition, Ix - xj| <h for

all x€P., and since ||V *af| is uniformly bounded in Q, we have

3
(Vea)(u - uy)
-[Pj * J

1

A,
d

= O(h) (2.42)

Finally, since Bj k and Bj p are each evaluated at the midpoint
J )
of Pj,k or P,j,B’ respectively, we can use a Taylor series

analysis, as in deriving equation (2.38), to obtain

l \ . . - . . - .
Kj' Z fr (B -Bj,K)uy + Z_/I: (B -B3,Bluj[=0(h) (2.43)
'k J>k B J,B

Combining (2.41), (2.42), and (2.43) in (2.40) we obtain

L. L.
(v - CL)U.(XJ)-Z _%Lk. Bj’kuj - Z _%2_]% Bj,Buj = 0(h) (2.44)
P B
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Note that (2.44) holds for all J, not Just for Jjedy.
We can now substitute (2.39) and (2.44) in (2.33) to obtain
|Ku(xj) - (Khrhu)jl = 0(h) for all JjeJ; (2.45)
We cannot obtain as good a bound for lKu(xj) - (Khrhu)jl
when jeJé, although (2.44) holds, since Pj,k is not in general
bisected by the line between X3 and xy. However, we can show
that lKu(xj) - (Khrhu)jl is uniformly bounded for jeJ,, which
is adequate since the area of Q, 1is of order h. The two in-
equalities which must be re-examined are (2.36) and (2.38).

We now have, since u and (pu) satisfy Lipschitz conditions, that

f By, x(Rug - (w5 + w))| = 0(n?) (2.46)
T3,k
/F pu - (Bu); 1 | = o(s)
3rk
(2.47)
f pu - (Bu); p| = o(r?)
T3,8

Using this, with the other results which still hold, we see that
IKu(XJ) - (Khrhu)j] is uniformly bounded for JjeJp, as h - O.
Using this, together with (2.45) in (2.32) we obtain
-y-2 2

Kl = 0(h™) + o(h) (2.48)

so that
1/2
Iegongll, = 0(6t/2) (2.49)

The next step is to show that ”thh“Bh = O(h). We have

”thh“B = “Mhuh - Mhrhu”Bh = ”Mhrhu”Bh
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since Mhuh = 0.

¥yl By

Now
PIDIE NS
Ly, nMprnt) ;B
j B

— . . . - . - 0 2
) :;: :;: Ly,Bny,8% - By,B(2up - uy))

However, using the fact that Bj,BuB = M3 BYB
k3,595 - By,n(2up - uy)| < [uy,p(u; -up)| + [By,5(ug -uy)| = O(n)
since u is differentiable, and [|u|| and ||g|| are uniformly

bounded. This shows that

Myl = o(u2),

since :E: Lj B is simply the length of 0OQ. This proves that
;B 7

”MhWhHBh = 0(h) (2.50)
Using (2.49) and (2.50) in (2.31), we see that

2 = gl 0(w/2) + Jhwoy g, () (2.51)
From Lemma 2.4,HwhHBh must be bounded, since
W < + |jru
hapllp, < loyllp + Iryulle

1

Iy tlly, + llrpull
q/k;xu By

<

which is certainly uniformly bounded as h - O. Likewise ”Wh“h is
bounded. So from (2.51) we have
[, lly, = o(nl/%) (2.52)
However, if we use (2.52) in (2.51) we get “Wh“h = O(h3/8), or by
repeating this procedure enough times,

ke ll, = 0(nV), for any positive v < 1/2 - (2.53)



34

Finally, we establish the convergence rate for ”phuh - .

We have
Ippuy - ull < llppw, - pprpull + opryu - ulf

= flwlly + lppryu - (2.54)

The last term can be estimated by

lpyr,u - ull® = z _/P' (a5 - uw)? = 0(h?) (2.55)
J J
Using (2.53) and (2.55) in (2.54) we get
thph -ull=0(n’)+0(h) = 0(h¥), for any positive v < 1/2° (2.56)

This completes the proof of Theorem (2.1).

2.5 Solution of the Finite Difference Equation

For our method to be of practical use we must have some
method for computing the solution to the finite difference equa-
tion (2.23). We will consider only the two-dimensional case
here. In any case we can partition the matrix A so as to be block
tridiagonal. For example, suppose that the mesh points H lie on
lines such that the mesh points on any one line are connected
only to points on the same line or adjacent lines. Thenh we can
partition A into blocks corresponding to each line. The diagonal
blocks will themselves be block tridiagonal with r X r blocks.
The matrix equation can then be solved by the block tridiagonal
algorithm ([8] and [6], p. 196). We suppose A to be written in

the form,
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A= (2.57)
<:> CNp-1
o '%‘A L

where NL 1s the number of lines. Each B; is an rnXrn
block tridiagonal matrix, where n is the number of points on
the i®® line. From equation (2.23) since B. k = -Bx.; We see

Jds yd
that A; = C¥_,. Thus C; need not be stored for a computer
solution. The block tridlagonal algorithm is completely analogous
to the ordinary tridiagonal algorithm. Suppose the equation to be
solved is Au = f, where u and f are partitioned as required.

A typical block equation is

Aiu-_l + Biui + Ciui+l = fi

1
First let
Wi = Bl
yl..—.. fl

The forward sweep is given by

1 N
G, = AWl
y; = £ - Giys g ? for i=2,3, .. ., NL
Wy =By -0G3C3 5

This is followed by the backward sweep. First,
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Uy, = WL
Then

-1 .
u; = W, (y; - Cuyyq) for 1 =N -1, NL -2, . .., 1

Of course this algorithm will not work for every non-singular
block tridiagonal matrix. However, Schecter [8], gives a suffi-
cient condition for the wvalidity of the algorithm, and that is
simply that A has definite symmetric part. We have already shown
that A has positive definite symmetric part. There is one real
disadvantage to the method, however, and that is the fact that
each W{l is a full matrix and must be stored during the forward
sweep for use on the backward sweep. This results in large com-
puter storage requirements, and the use of tapes or disks for
temporary storage for only a moderate number of mesh points. This,
of course, is very time consuming. An alternate procedure is
suggested by Schecter [8]. 1In Schecter's method only one matrix
need be inverted and stored for a number of consecutive lines
with an equal number of points per line. However, the matrix
to be inverted may be ill-conditioned if too many lines are grouped
in this way.

An alternate method of solution may be possible in some cases.
Note that A may be decomposed as

A=D+ 8
where D is Hermitian and positive definite, and S is skew
symmetric. The eigenvalues of D are usually easy to calculate

since D is block diagonal with r X r blocks. If the smallest
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eigenvalue, Ap, of D 1is larger than the spectral radius, p(S),

of S, we will have

lo-1s| < Ip=Y| sll = % o(s) < 1

In this case we could use the following iterative method. Let

u(o) be arbitrary, and define u(l) recursively by

pull) - _su(3-1) 4 ¢

In this case lim u(l) = u. In general, though, the eigenvalues of
Js00

D will not all be sufficiently large for this simple method to
work. However, the original finite difference equations can be
modified in some cases by the addition of a "viscosity" term, so
as obtain a convergent iterative procedure for the solution of the
matrix equation. This will be discussed further in Chapter III.

2.6 Convergence to a Weak Solution

We can consider the discrete analogue of a weak solution. Let
Vh be the set of discrete functionms, Vi defined on H and
satisfying M;vh = 0. For a discrete weak solution, u,, we would
then require that
(K%Vh’uh)h = (vp,ryf)y for all veVy, (2.58)
Form the "first identity" (2.20) we have then
(vh,rhf)h = (vh’Kﬁuh)h + (v ,Mhuh)Bh for all veVy (2.59)

We see from this that (Khuh)j = fj

the boundary, by choosing (vh)j =1, and (

for all Pj which are not on
vh)

Because of the discrete nature of the equations we are not assured

L =0 for k £ 3.
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of u, satisfying the boundary conditions. However, conversely,
if Uy, satisfies Kypu, = ryf and Mhuh = 0 we see imeediately
that (2.58) must be satisfied.

Chu [2] has shown weak convergence of his finite difference
solution to a weak solution of a symmetric positive equation and
Cea [9] has investigated generally the question of weak or strong
convergence of approximate solutions to weak solutions of elliptic
equations. Using these ideas, we can prove weak convergence of our
finite difference solutions to weak solutions of symmetric
positive equations.

Theorem 2.2 For any h > 0, let Hy be a set of mesh points
satisfying the requirements of Theorem 2.1. It is assumed that
qecz(ﬁ). Let w, be the unique solution to

My, = 0

If {?iy? 1 is & positive sequence converging to zero, then
i=

(?h.uh:y” has a subsequence which converges weakly in H to a
1 i
i=1

weak solution, u, of equation (1.5), that is
(k¥v,u) = (v,f) for all veV
Furthermore, if u is a unique weak solution, then {bh-uh:y”
il L
i=

converges weakly to u.
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Proof - First we note that |pyuyl is bounded, since

”Phuh“ = ”uh“h S i%‘“rhf“h’ by Lemma 2.4. Hence, there is a sub-

sequence of {?r Uy, } that converges weakly to some ueH. (See

o Ml §
Theorem 4.41-B, Taylor [10].) For convenience of notation we will
suppress the subscripts on the h.

We have, for all vevV,
% * *
I(Kirhv,uh)h - (K*v,phuh)l < epKpryy - K vl [lopuyll
N R S t) N LD

But “Phrh v - K*v”'» 0, and in Theorem 2.1 we can substitute K*
for K in equation (2.49) to show that HK;rhv - rhK*v“ -0

(since Khwh = rhKu - Khrhu). Since thuhH is bounded,

linm |(K§rhv,uh)h - (K*v,phuh)l =0
b0

However, since K¥ve 8, we know that lim (K*v,ppuy) = (K*v,u)

>0
We have shown, then, that
lim (K*r,v,u_), = (K*v,u), for all veV. (2.61)
h_>OKEh Yn’h ,

The discrete "first identity", equation (2.20), gives

(KErpv,up)y + (Mrpv,up)p, = (onv,Kpun)n + (ruv,Maun)s, = (rnv,70f)n
(2.62)

Hence

|(Kirhv,uh)h - (rpv,rpfly| < “N#rhV“Bh”uh“Bh (2.63)

By Lemma 2.4 ||uh|lBh < rpflly/ Agh, Which is bounded.
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Also, the proof of equation (2.50) shows that lim “M*rhv“ =
10 ®n

for all veV, so that

*
lim I(Khrhv,uh)h - (I‘hv,rhf)hl =0
h-»0

Further, it is obvious that

1lim (rhv,rhf)h = (v,f)
h»0

Combining (2.61), (2.64) and (2.65) gives
(K*v,u) = (v,f), for all vev,

which completes the proof of the theorem.

0,

(2.64)

(2.65)



CHAPTER IIT

SPECIAL FINITE DIFFERENCE SCHEME FOR ITERATIVE

SOLUTION OF MATRIX EQUATION

3.1 Specilal Finite Difference Scheme

As pointed out in section 2.5, the matrix equation Au = f
can be solved by an iterative procedure if the eigenvalues of the
diagonal coefficient matrix are sufficiently large compared to the:
eigenvalues of the off-diagonal coefficient matrix. Following the
idea of Chu [2], we modify the finite difference equation by adding
a "viscosity" term which will have a diminishing effect on the fi-
nite difference equations as -0, and yet will assure the conver-
gence of an iterative method. Unfortunately, the method is not
applicable to every arrangement of mesh points. In fact there are
rather severe restrictions which must be met. The first require-
ment is that the difference in areas of adjacent mesh regions be
sufficiently small. This cannot be readily done along an irregular
boundary, however, unless the boundary is modified. A problem
arises if the boundary is modified. The boundary condition is
given by Mu = (p - B)Ju=0 on OQ. We need to extend M to be

defined in a neighborhood of the boundary. It is possible to

41
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extend M continuously in a neighborhood of the boundary. How-
ever, if the direction of the boundary changes, B changes
drastically, and we have no assurance that u will be positive
definite. The second requirement then is that M can be extended
continuously over a neighborhood of the boundary, in such a way
that p  will have positive definite symmetric part along the
approximating boundary.

Let 0 be an approximation to Q. p will have to meet
several requirements to be specified later. H; will denote a set
of mesh points associated with @ and with maximum distance h
between connected nodes, and ﬁh will denote Hy U {?ﬁ}. The

discrete inner product is given by
(up,vy) = ? As(up) 5 - (vp)y (3.1)

with the A; being the area of Py Cq,. Simiarly, the "boundary"
inner product is changed so that the lengths, Lj,B’ are the lengths
along Ofy.

We define now two new finite difference operators, K£ and

l\_dh) by
— U. - W Us = W
(K,u). = (Ku). + oK, g R (3.2)
h™'j h*/ 1. 1.
Jsk J,B
k B
— cAj
(Mu): g = (Mu); n - =—— (u, - uy) (3.3)
h*’/j,B My J,B Ly Bl3,B 9 B
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where o is a positive number which must satisfy requirements to
be wpecified later.

It will be useful to prove a slightly different version of the

"second identity".

Lemma 3.1 If K is symmetric positive, then

(uh,Khuh)h + (uh,Mhuh)Bh (uh,Guh)h-+(uh,puh E __l_ (u -uk)
Jrk

(3.4)
where indicates a sum over every (j,k) pair where X5 is
(‘a',k)
connected to xx-.
1

Proof: Using the "second identity" for Kh and Mh, equation

(2.22), we have

(uh’Khuh)h + (uh’_Mhuh)Bh = (uh’Guh)h + (U‘h’p'uh)Bh

oA ’ oA, ,
+zzz‘.‘l‘uj'(uj'uk)+z =5 9y - up)
\ J}k ] J}B
J k

J B

oA .
- ; z i.TJ_uJ (U.J - U.B)
Ced J,B
J B
The last two terms cancel. For the other term we have

S B ]
Zzzj,k R | [Za,k((uj Ty T T ()
>

.8

which completes the proof.
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Lemma 3.1 immediately assures the existence and uniqueness of
a solution for the special finite difference scheme. Using

Mhu, = 0 to eliminate up from K = rbf we obtain

+ A G + =A.T.
z LJ;kBJ:k lj k Z z J:BHJ,B J Jd J
k

(3.5)
for all xj€Hh

Let A be the matrix of coefficients of (3.5).

Lemma 3.2 If K is symmetric positive, then

has a unique solution on Hh'
Proof: The hypothesis implies that
By Lemma 3.1 A has positive definite symmetric part, and hence
is non-singular. Thus (3.5) defines w), uniquely on Hy.

Also it will be noted that the "second identity" of Lemma 3.1
will give the same a priori bounds for “uh”h and “uh“Bh as given
by (2.25) and (2.26).

3.2 Convergence of Special Finite Difference Scheme

We will now show that the special finite difference scheme
converges to a smooth solution, under a number of hypotheses
given in the theorem. The theorem also includes all the hypotheses

needed to assure convergence of the iterative matrix solution.
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Though quite a number of requirements are given, there are only
two essential restrictions, namely, that the areas Aj must be
nearly uniform, and that M can be specified on a modified
boundary in such a way that y remains positive definite.
Theorem 3.1 Suppose that u€CZ(Q) satisfies

Kn=f on Q

Mu=0 on oR

where K dis symmetric positive. For any h >0, let Qh be an
approximation to {, and let H, Dbe a corresponding set of mesh
points with maximum distence h between connected nodes, and
also with Lj,k’ Lj,B’ and lx - le for xer all less than k.
It is assumed that the following hypotheses are satisfied:
(i) There exists Kj > 0, independent of h, such that for
2
every P. we have h /A. <K,.
J J 1
(ii) There exists Ko > 0, independent of h, such that all
Pj with any point at a distance greater than Kph from N are
equal rectangles.
(iii) There exists Kz > 0, independent of h, such that for
all xe€ol,, the distance from x to oQ is less than Kzh.
(iv) There exists K, > 0, such that M can be extended so
as to satisfy a uniform Lipschitz condition at all points at a
distance less than K; from oQ.
(v) Q, is such that . =M+ B has positive definite

symmetric part on oOQy.
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(vi) Let W %be the set of points that are a distance less
than K4 from oQ. Then «, G, and f are all extended to be
defined on Q(JW with QGCZ(QLVJW) and G positive definite on
alUw.

(vii) There exists Kg > O, independent of h, such that all
points, X35 associated with a boundary polygon, Pj’ are in the
polygon, and at a sufficient distance, zj,B’ from any boundary
node, xp, of Pj so that Aj < KSLj,Blj,B'

(viii) Either Qh(: 2 or else u can be extended so that
uecz(ﬁh).

(ix) o > nK pg *+ d, where 4> 0 and pg = Sup p(n-a(x)),
xeQUW

where n 1is any unit vector and 1 1is the maximum number of
nodes connected to any one node.

(x) lAj/Ak-11{'dhd(ﬂ)a/(nzo?h),-for'all conhected nodes,

x; and xy, where A, is the smallest eigenvalue of G in Qh, and

J
' — »
h' = mln(Zj k).
(xi) The length of BQh is uniformly bounded.
Let w, be the unique solution to
Khuh = rhf
ﬁhuh =0
then

Ihh'-rhuH==O(hV) as h»0, for any positive v < 1/2;
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\
Proof: Letting wyp = up - rpu, and using the "second identity,"
(3.4), we see that the inequality (2.31) is still valid for Kh
and ﬁh:
el < 5 Ul Eglly + ool Fon 5, ) (3.6)
We have
I_(hwh =Khuh - Khrhu= ry,f —ﬁhrhu =ripf -Kyrpu +Khrhuh-4' E'hrl'iu s
hence
Ky lly, < llrpku - Krpully, + Ky rpu - Kyrpully (3.7)
In checking the proof of Theorem 2.1 we see that ryKu - Kyrpu
is the same as Kpw, (Theorem 2.1), hence the bound of (2.49)
holds for this termy
lryKu - K rpully, = O(hl/z) (3.8)
For the other term we have
2
“(R—h - Kh)rhu“i = ZAJ.UB uz-—‘l——i +Zu.L—‘L-u—B | (3.9)
Jsk J,B
3 K B
Let Jl denote the set of subscripts for those Pj which are

equal rectangles, and let J, denote the rest of the subscripts.

When jeJ, we have only the term Z:(uj - uk)/zj,k to consider.

Because of the rectangular arrangement of points we can use a

Taylor series analysis to show that
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so that

2
u, - u

Ao éLz._k; = 0(h®) (3.10)
J,k
Jedy k
On the other hand, when jer we cannot do as well. However, we

note that both (uj 'uk)/lj,k and (uj - uB)/zj,k are unlformly

bounded since u has a bounded derivative. Also, by hypothesis

(ii), E Ay = 0(h), so that
J€do

2
u. - u u. - U
A.o% ko 3~ B} = o(n) (3.11)
J 1. 7~
Jsk J,B
B

jedo k
It is assumed, of course, that the number of nodes connected to
any one node is bounded as h»0.
Now, using (3.10) and (3.11) in (3.9) we have
(&, - Ky)rpull, = o(ul/2) (3.12)
Taking this together with (3.8) in (3.7) finally
Ryl = O(6172) (5.13)
It is necessary now to obtain a bound for ”EﬁwhHBh‘ Since
ﬁhwh = ﬁhuh - ﬁhrhu = -ﬁhrhu, we have
”thh”Bh = ”Mhth“Bh + {104, - Mh)rhu”Bh (5.14)
We have

Il = z Z Ly,p g5 7 By (20 - 8"
J
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We can establish a bound, since
4y, - B3,8(2up - wy)| < luj p(uy - up)]

* 1y 5 - By pupl + |8y pluy - up)
The first and last term on the right are of order h, since u is
differentiable and ||u|| and ||p| are bounded. By hypothesis (iv)
M satisfies a Lipschitz condition, and so does u. Since the
distance from xp to 0@ is less than Kzh by (iii) and
Mu=0 on 0OR, we see that I(“j,B - Bj,B)uBI = 0(h). Since, by
(xi), ?; Lj,B is uniformly bounded, we have

“Mhrhu”Bh = 0(h) (3.15)

Aﬁc 2
E E L., of+—2— (u. - uy)
B\L. . B
3 5 ds LJ:BZJJB J

SZZ Lj, gcz(uj - uB)Z, by (vii)
J B

o(n?) (3.16)

Also

I

I, - u )zl

This shows that

”MWhHBh = 0(n) (3.17)

We check now to see that ”Wh“h and ”Wh”Bh are bounded. We
have, using the a priori bound for |lwyly,

ol < gl * Mgl < 55 B2l + Dol (5.18)
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which must be bounded since f and u are. In the same manner,
“Wh“Bh must be bounded. Using this fact together with (3.13)
and (3.17) in (3.6) we have
gl = o(m}/4) (5.19)
Using now (3.19) in (3.6) we get |lwll,, = 0(n3/8) ana by repeating
the process as many times as needed we get
Hw ” = 0(hv), for any positive v < 1/2 (3.20)

3.3 Convergence of the Matrix Iterative Solution

For the iterative solution of the matrix equation Au = f
we will split A into a block diagonal part D, and off diagonal
part B. (We will suppress the subscript h on the finite

difference solution uh.) Thus, from (3.5), the % block of D

e ) Ly,84,8

is an r X r matrix,

B
and a typical block element of B is
oA ;
- . . - —J—
By = yePye 77 1
Jrk

and A =D + B. The iterative method is given by

u(i+l) = -D"lBu(i) + p71lf

0)

where u( is arbitrary. The hypotheses of Theorem 3.1 assure

the convergence of u(i) to us
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Theorem 3.2 For any h > 0, let Qh and H;, satisfy the hypotheses
of Theorem 3.1. Let u(o) be an arbitrary vector defined on Hy,
. oo
and let {P(lx>i=0 be a sequence defined recursively by
w(itl) o p-Ipy(i) 4 p-lf
Then 1lim u(i) = u, where Au = f.
J»0
Proof - By the contraction mapping theorem it is sufficient to show

that |[D™1B|| <1 for some matrix norm. Let v be an arbitrary

vector defined on Hy, and let w = D1Bv. Since Dw = Bv, we

have
(W)DW) = <W:BV>
or
oA, \
wit(AGy t > T T g -
Jrk
J k B

IN ]
" DN
M WN J
o
[\\//] «
C.
£ .
"_h.
* [
Cu
~j a <
o B b
- ©
b c_'
— =
] 1
L IQ,%
a
hov)
< HH
- R
=
.

1 UAj
+ = Vk - I-1. kB' k Vk (3-21)
2 1 NEE S B)
i 3k
k

This last inequality follows from the fact that

(W;HV> < -21- (W:HW> + %— <V:HV>
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for any positive definite Hermitian matrix. We see that

(oAj)/(Zj’k) I - Ly yB;,k 1is positive definite, since

—Lkz e g, B> elBy,k) 2 Ly, ke(By,x) (3.22)
dJdo

by (i) and (ix). By rearranging the terms of (3.21) so as to have
all the w terms on the left and all the v terms to the right,

we obtain

E lag, + EL. . +1§ :{;- -__LI+L
WJ Jd J J:BuJ: Y3 J;kﬁ k J
J B
oAy
vyt 37— I+ Ly xBj, k|73 (3.23)
3 Jsk

The last expression was obtained by interchanging j and k,

74N
N ol

since

. .y L, = . a . = - .
Jsk k,3” T3,k Lk:J’ an ﬁJ)k Bk:J

We can write (3.23) in the following form.

Wyt |88t § Lj,B43,B|¥; E g
B

I+LJ:RBJ x|V

1 g 2
k
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or
(w,Xw) + {w,¥w) < (v,¥v) + (v,Zv) (3.25)
wvhere X, Y, and Z are matrices defined by (3.24).
We have already shown that Y is positive definite (using
(3.22)); hence we can define a norm by
IvIlZ = (v, xv) (3.26)
We will show that D™1B is a strict contraction in the Y norm.

First we will need some inequalities. We have

(w,3w) > N [wllZ (3.27)

Next, we have

L. K
o Jrk no . N1%1 fo o
§ T . A o(B; )| s+t 7 () 2n gr
T Jds J

by (i) and (ix), so that

(w,¥w) < 09 [l (3.28)

Also (w,Yw) can be bounded below, since

L. L. T]K
o Jyk S 0 _ J.k g _ 1 a
.. " a, Pkl [Fn A o PRx|2R - E PBR2R
Jrk J J
k k

by (i) and (ix). Thus, we have

d 2
{(v;¥v) 2 o= [Ivll, (3.29)
Finally, since
c(Ak - A)) fh e
A.

. . — t
AJlJ:k J h
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we have
(v,7v) < A 22 [v]|2 (3
’ 2nt ' 'h )
where ‘A = max IAk/Aj - l|, for all connected nodes, X4 and  x.
From the definition (3.26), and using (3.27) and (3.28) we have
h' 2
) + o) > (14 T (5.
On the other hand from (3.29) and (3.30)
noA (h 2
(VyYV} + (V:ZV) <11+ nr ”V” (3-
d \n Y
Substituting (3.31) and (3.32) in (3.25) we have
I 1o/18 (ﬁ)
2 d \h' 2
hellZ < el (M (3.
1+
no

Since w = D'le, and v 1s arbitrary, we see that ”D'lBHY <1

since

A<

2 (1)

by hypothesis (x). This completes the proof of Theorem 3.2.

Of course, if Qh can be selected so that all the Aj are

equal, then hypothesis (x) is satisfied, and
1

Agh? 1/2
no

Io=18]ly <

1 +

In the special case where all the Pj are equal rectangles,

n =4, so that

(3.

30)

31)

32)

33)

.34)

35)
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\/2

-1
18]l < (3.38)




CHAPTER IV

APPLICATION TO THE TRICOMI EQUATION

4.1 Transonic Gas Dynamics Problem

An example of a problem of physical significance can be
drawn from the field of gas dynamics. A stream function is
introduced such that derivatives of the stream function are
velocities of the gas. The stream function satisfies a second
order partial differential equation which is elliptic where the
flow is subsonic, and hyperbolic where the flow is supersonic.
The equation is of mixed type, then, for a transonic flow problem.
When the equation is linearized by means of a hodagraph trans-
formation, and after a further transformation, the Tricomi equa-
tion results,

F(Y)Wxx - Wyy =0 (4.1)

where F(y) is a continuous monotone function such that yF(y) > O
for y % 0. Details of the derivation of (4.1) are given by

Bers [11]. A sqlution for (4.1) for a region § which includes
a portion of the x-axis is determined by proper boundary value
data along portions of oQ. The proper boundary value data is
known only for special cases. Usually the appropriate boundary

data is the value of the function over part of the boundary. If

56
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the boundary data is sufficiently smooth, we can transform the
homogeneous equation with non-homogeneocus boundary conditions to
a non-homogeneous equation satisfying homogeneous boundary condi-
tions. The problem can be stated in the following form then,

F(y)e_ - Pyy = f£,(x,y) on @ (4.2)

plo's
a gﬂ + b %2 =0 on o0
) n

where a or b or both may be zero on part of oQ. It is
possible, also, that the stronger condition 09/ds = dp/dn = 0
may be imposed on some portion of oQ.

4.2 Tricomi Equation in Symmetric Positive Form

It is desired to express (4.2) as a system of first order

differential equations. Following Friedrichs; we can do this

u
. 1 . .
by letting u, = Pys Up = @y, and u = (uz). Using the compati-

bility condition, Pyy = , we have

Pxy
F(y) © 3 0 -1\y, £
5;4- 5;: (4-3)
0 1 -1 O 0
This equation is symmetric, but not positive, since G = 0. To
make (4.3) symmetric positive, we can multiply by a 2 X 2 matrix,
B. In order to keep the coefficient matrices of Bu/ax and
Bu/ay symmetric, B must be of the form
b cF(y)
B = (4.4)
C b

where b and c¢ are functions of x and y.
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Equation (4.3) can now be expressed in symmetric positive
form by
Ku=f on @ (4.5)
where
Ku = aXu, + (aXu)y + aYuy + (qYu)y + Gu

bF(y) cF(y)

aX = 1
' 2 \cF(y) b
cF(y) b
o =-x
2 b c
(4.6)
x v 1 (cy =D )F(y) +cF' (y) by -c,F(y)
G = oy "=
by - cXF(y) ey - b,
bf
e=| 1
ofy )

For the proper choice of functions b and c¢, G will be positive
definite, resulting in symmetric positive K. The specific choice
of b and c¢ depends on the shape of §§ and on the boundary
conditions which are specified.

It is possible that B may be singular in Q, however, this
does no harm if XE is singular only along a line.

4.3 Admissible Boundary Conditions

Let n = (nx,ny) be the outer normal along oQ. Then

B=n-'q or
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F(y)(nd - n,c) ncF(y) - ngb

g =32 (4.7)
nycF(y) - nyb nyb - nyc
Friedrichs {1] noted that the quadratic form u-pu may be
written
2 2
(b2 - c2F(y) ) (nyuy - nu,)2 - (02 -F(y)n) (buy +cu,)
- pu= Uy = dp Dy Ox/\ 0% 2 (4.8)

2(bnx + cny)
From this we can easily specify the boundary matrix, p, so that
admissible boundary conditions result. Let p be defined so that

|b2 -czF(y)I(nyul —n.xu.z)2 +,n§ —F(y)ni](bul +cu2)2

2|bnX + cny| (4.9)

u‘pu=

Of course u 1is non-negative definite. Also, nlu - plon(p + B)==R?,
so that the boundary condition Mu = (p - B) u=0 is admissible.
Thus we can always obtain admissible boundary conditions. How-
ever, since b and c¢ can be chosen subject only to the con-
sfraint that G 1is positive definite, we can have a wide variety
of possible boundary conditions.

The actual boundary conditions for ¢ are determined by the
sigﬂé of bny + cny, bl - czF(y), and n§ - F(y)ni. For the
elliptic part of &, y < 0, we have F(y) < 0; hence both
b2 - c?F(y) > 0, and nZ - F(y)n§ > 0, so that the boundary
condition is determined solely by the sign of bnx + cny.

Suppose that bn, + cny x 0. Then

6% - cBF(y)| (nyuy - nyup)?
[bny + eny

u*Ma=u-(u - Blu-= (4.10)
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it

so that Mu = O dimplies nyuy = nyua. In terms of ¢ this means

that ¢x/®y nX/ny = -(dy/as)/(ax/as), where y = y(s), x = x(s)
are boundary coordinates as a function of arc length, s, along

oQ. Hence
B g, Erg L-o (4.11)
so that ¢ is constant along OR when bn, + ceny <.0 1in the

elliptic region. On the other hand, if bn, + cny > 0, we have

_ |nd - F(y)nl|(buy + cuy)?
[bnX + cny[

so that Mu = O implies that bu; + cup; = 0, so that dm/dp = 0,

u-° Mu

(4.12)

where p 1is in some non-tangential direction. Thus, for the
elliptic region we generally have a single boundaf& condition
corresponding to the usual elliptic type of boundary condition.

In the hyperbolic region the boundary conditions depend on
whether the magnitude of the boundary slope is greater than, less
than, or equal to the magnitude of the slope of the characteristic
curve. For equation (4.2), the characteristics satisfy the differ-

ential equation

P (4.13)
F(y)

ay
dx
Suppose that the boundary is tangent to a characteristic, then

Z_ &y
ny T &
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so that
nj = F(y)n§ (4.14)
Suppose that a portion of o0 is a left running characteristic,
so that n, = JEFy) n,. Then, from (4.8)
(b + cy/F7N) (b - c/F(3)) (nyuy - nyup)?
2(b + c1/F(§Y)nx

(b - c+/F(y)) (nyuy - nyup)” (4.15)
2ny

u-pu =

Suppose that this portion of oQ 1is a right boundary, so that
n, > 0, then, if b < c+4/F(y), equation (4.11) holds and

dp/ds = 0, but if b > c+/F(y), 0 = B and no boundary condition
is imposed. Similarly, along a right running characteristic,
thé same types of boundary conditions are determined by the sign
of b+ cqﬂﬁr_y.

If the boundary is not characteristic, we have n§ > F(y)ni
if the ﬁagnitude of the boundary slope is less than the magnitude
of the characteristic slope, and vice versa. Thus, the particular
boundary condition is determined by the signs of all three terms,
n§ - F(y)n%, b2 - c2F(y), and bn, + chy .

The various boundary conditions implied by a choice of b
and c¢ are summarized in Table I. It can be seen that there
is considerable choice in the type of boundary which can be

specified by the proper choice of the functions b and c.



TABLE

TI.

g2

- SUMMARY OF BOUNDARY CONDITIONS

Elliptic part of

a(y <0)

Boundary condition

Condition on b and

c

%cg- =0 bnx + Cny <0
do _
& = 0 bny, + cry >0
Hyperbolic part of §(y > 0)
Boundary condition nype of boundary Conditions on b and c¢
do .
3s = © ny=+/F(¥)n,n,>0 [b R c+/F(y)
none ny = /F(¥)ng,nx>0 [b Fc+/F(y)
none ny = --\/F(y)\'nx,nxii 0lbrn< - e~fF(y)
d v
d_i =0 ny=—-\/F\(y)nX,nX < 0olo > - c+/F(y)
d 2 2 2 2
a% =0 ny > F(y)nx b“>c”F(y) and bny +cny>0
dp _ 2 2 29 .2 +
T =0 ny > F(y)ng b¢>cF(y) and bny cny, <0
ap 4 _ 2 2 2.2
3= =3 =0 ng > F(y)ng b®<c®F(y) and bn,+ cn.y>0
2 2 2 2
none ny > F(y)nx b” <c"F(y) and bny +cny<0
none n:)z, <'F(y)n)2( b2> c2F(y) and bn, +cng >0
42 _d? _ o n32, < F(y)n;z( pe> czF(y) and bny+ cny <O
ds dn
de _ 2 2 2 ¢ o2 S
3= =0 ng <F(y)ng b4<c“F(y) and bny +eng >0
d 2 2 2 2
—(%) =0 ng <F(y)n& b“<c®F(y) and bny+cny<O0

Note: ‘p denotes the ‘distande in some noh’—tangeint.ial direction, -
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4.4 Sample Problem

A simple choice of b and c¢ which will result in G being
positive definite in @, if F'(y) > 0, is

b=-bo-blx, bl>0

(4.186)
blF(Y)
¢ = ¢y, where cq 2> - Q
F'(y)
Then
1F(y) + coF'(y) O
1
G=3 0 b (4.17)
1
which is obviously positive definite.
To show the type of boundary conditions which may result,
consider the case F(y) =y, so that
G == 4.18
2 0 by ( )
The characteristics in this case satisfy one of the equations
y
which can be solved to obtain the characteristic equation,
9
¥3 =7 (x - x0)? (4.19)

where xg 1s the point on the x-axis intersected by the
characteristic.

As an illustration, suppose that Q 1is the region shown in
figure 2, which is bounded by two characteristics in the hyper-

bolie region and by a curve satisfying n, <[(bg + byx)/cq] n,
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Parabola
(byx + by = cfy a3 g+ w2
\/ F ya_%(x_,(o,z

/ Q\

<4 l
~+ (‘XO.O) \‘ﬁ\g (Xo, 0}
M

Type of boundary | Boundary

condition
(b + by
M|y <= %‘SLO
d
Fa| ny = ¥iny -0
ry ny* -Vyn, None

Figure 2. - Region, §, for a Tricomi problem.
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in the elliptic region. It is assumed that bg/b; 1is chosen
large enough so that the parabola (byx + bo)2 = cBy 1les entirely
to the left of Q, as indicated in figure 2. The boundary condi-
tion is dp/ds = O for the elliptic portion,

'y, of oQ, and for one characteristic, I'p, with no boundary condi-
tion on the other characteristic, I'z. This is known as a Tricoml
problem. Variations are possible with T'; and Tz replaced by
several characteristics. This type of problem is discussed by

Bers [11], p. 88.

It is worthwhile noting that the solution obtained by the
finite difference solution of the symmetric positive form of the
Tricomi equation consists of derivatives of the stream function,
which corresponds to velocities in the physical problem. Hence,
even though we have a convergence rate which is less than O(hl/z),
it i1s essentially equivalent to a convergence rate of O(hs/z)

if the original second order equation were solved directly for

the stream function.



CHAPTER V

A NUMERICAL EXAMPLE

5.1 Description of Problem

A numerical solution to a Tricomi equation was calculated
using the finite difference scheme of Chapter II. The accuracy
of the solution was checked by using a problem for which an
analytical solution is known.

The Tricomi equation can be put in symmetric positive form
as indicated in the last chapter, as given by equations (4.5)
and (4.6). The region { chosen is indicated in figure 3.

The choice of b and ¢ are

b= -3 -x
(5.1)
c =2
which gives by, = -1, and by =y = Cp = 0. We choose F(y) = y.
Using this in (4.6) we have
1+ L
2
G = (5.2)
0]

which is positive definite in Q.
We now check to see what the admissible boundary conditions

are from Table I. For the hyperbolic part of Q(y > 0), we need

66
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Parabola
(x+ 3= 4y
(0% = c2y)

Fsy? =30+ 12
—_— . ———

9y -12
-

M3

Figure 3. - Region for numerical example,

(0,-1)

(1,0
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to know the sign of b2 . czy = (x + 352 - 4y. From figure 3 we
see that b2 > czy in @, hence, since b < 0 in Q, we have
+ c«/g < -b in . From Table I, we have d$/ds =0 on I
and no boundary conditions on T's. For the elliptic part of
Q(y < 0) we need to check the sign of bn, + Chy. Along T

we have n, = 1, n, = 0, so that bny + cny = (x+3)<oO0
along T'5. Hence, the admissible boundary condition along Pz

is d@/ds = 0. Next we check TI'z. Then ny =0 and = -1,

Ly
and bny + eny = -2 < 0, so that dp/ds = O along I'z. Finally,
along Ty, n, = -1, ny = 0, giving bny, + cny = x +3 =220,
since x = -1. Hence dw/dp = 0 along Ty, where p 1is some
non-tangential direction. To find the specific direction, we go
back to equation (4.12) which holds in this case. We see that

Mu = 0 implies that bu; + cup = -2@x4-2@y =0 or Q4= Py
Hence p 1is in a direction sloping downward at 450. We summarize

the boundary conditions:

Boundary Condition
r ®_o
1 ds
d9 _
PZ ds 0
a _
Ty as = 9
F4 CPX=cpy
P5 None

A simple, but non-trivial function satisfying these boundary
conditions is easily obtained by choosing a function which is

zero along Ty, T, I'z, and Iy, with the normal derivative also
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zero along Ty. These requirements are met by
o(x,y) = (x + 1)%(x - Dy + (&> - 9(x - 1)?) (5.3)
The function f; 1is determined by calculating YOy - wyy =1,
which gives
£1(x,y) = y(y +1)[ (4y° - 9(x -1)%(6x +2) -18(x% -1)(7x -1)]
- 24(x+1)%(x- 1)y(ay +1) (5.4)

The functions for which we are solving are then

o= (x+1) (y +1)[ (45> - 9(x - 1)8)(3x -1) -18(x+1)(x -1)]

(5.5)
Py =(x +1)2(x - 1)[16y° + 12y - 9(x -1)2]
and from (4.6) we have
x +3 \
of =
_ X + 3
v 2
} (5.6)
_ x + 3
y 2
o« = 5
x +
-1
2 J
“(x +-3)fl
f = (5.7)

We need to evaluate the matrix p along all boundaries, with
p  defined by equation (4.39). A straightforward caleulation gives

the following values for .
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Boundary v
segment

T x + 3+ 21é£ y - \/5
! 2T*y
- VY

1

- -2y ¥

? y 2 -y |
i‘ (x +3)% +2 .=(x +3)

T - W 2
-y vy

g ¥ 1-gy,

F5 X+ 3 - Zﬁlf Yy 1/;

24/1 + y Ay o1

This gives the information necessary to calculate the coef-

ficients of the finite difference equation, which is
. . + Z . . . + G.u. = P .
ZLa,kBJ,kuk e Ly, B3,8% * Asfsuy = ATy (5.8)

Equation (5.8):holds for every mesh point, X5s in the set of mesh
points. For simplicity a uniform mesh was used, as indicated in
figure 4. It will be noted that mesh pointsfbutside of 8 were
used. A solution was calculated for two different mesh spacings,
h=0.2 and h= 0.1. The finite difference equation was solved
in each case by the block tridiagonal algorithm mentioned in
section 2.5. Since the analytical solution, u, is given by (5.5)
we can calculate “uh - rhu“h, as well as the maximum value over

all mesh points of the maximum component of the error.
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Figure 4, - Mesh point arrangement for numerical example.
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5.2 Description of Numerical Results

Theorem 2.1 assures us of essentially O(hl/z) convergence in
the L2 norm. Unfortunately this does not assure us :of point-
wise convergence. As indicated in the proof of Theorem 2.1, the
finite difference equations can be expected to be less accurate
when the polygons, Pj, are not uniform rectangles. This was the
case in the numerical example. The result was poor accuracy near
the hyperbolic boundary segments, Pl and I'g. In going from
the coarse mesh (h = 0.2) to the fine mesh (h = 0.1), the 12
error was reduced from 6.06 to 5.30 which is not unreasonable
with the O(hl/z) convergence rate. However, the maximum error
actually increased from 33.5 to 60.9 indicating pointwise diver-
gence. The horizontal line (y = 0.75) along which the finite
difference solution for the finer mesh has the poorest agreement
with the analytical solution is plotted in figure 5. It is seen
that the finite difference solution has large oscillations Vith
a "wild" point at the end of the line.

All this is not quite as bad as it seems, though, since 12
convergence with pointwise divergence means that the divergent
points will occur as sharp peaks. Therefore, it can be expected
that a smoothing operation would give great improvement in the
results. With this in mind, a simple smoothing procedure was
tried. Since most smoothing methods are for one-dimensional

functions, the solution was smoothed by lines, first along vertical
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Analytical solution
o Finite difference solution

#x
10~

-10r

.30L | L { L I, | 1 b I " i i
-6 -.4 -2 0 .2 .4 .6
x coordinate

{b) oy
Figure 5. - Analytical and finite ditference solutions for y=0.75.
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lines and then along horizontal lines. The method of smoothing

used is similar to a method suggested by Hamming, p. 314, [12].
n

If it is desired to smooth equally spaced data, <&k}krl’ we can

define the smoothed data, (;Dk E—l’ by

- Yot ay -y
Yo = 2

+
Vg YA Yy
Ik = )

, for k=2,3, . . ., n-1

Vpg T, Y
2

T = n
In ©

The result of applying this smoothing procedure to the
solution based on the finer grid (h = 0.1) was to reduce the L%
error from 5.30 to 2.07. The maximum error was reduced from
60.9 to 13.8. This maximum error was at a point lying outside of Q,
the maximum error for a mesh point in Q was 6.4. The inprove-
ment obtained by this smoothing procedure is indicated by figure 6,
which shows the horizontal line with poorest agreement after
smoothing. The solution after smoothing along a more typical
horizontal line is shown in figure 7.

It should be emphasized that the smoothing procedure used here
was very simple and that most likely better results could be
obtained with other smoothing methods. For example, Lanczos [13],
gives several smoothing methods, both local and global (through the

use of truncated Fourier series).
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40_
Analytical solution
© Finite difference solution after smoothing
w—
o
20...
10~
@x o
0._
-10._
-20_
-30 1 n 1 : 1 1 t b 1 s }
(a) ¢y.

50—

40_
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20

?y 10-
© o
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0.;
o
-10-
-Zor
-30- 1 1 A U R 1 s 1 s ! L Jt I
-.6 -.4 =2 0 2 4 6
x coordinate
(b) oy

Figure 6. - Analytical and smoothed finite difference solutions for y = 0.75.
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15[‘

Analytical solution
O Finite difference solution after smoothing

10

5
#x
0 2.
-5
-10
X | s I ! 1 1 i i 4. ' | i { t 1 ' 1 [R—
(@) gy,
151
10+
Py 5r
0 O ——o—
,5L L ! , I N I L { ) ] ; 1 \ 1 — et L ! oo
-1 -8 -.6 -.4 -2 0 2 4 6 8 1
x coordinate
(b} Py

Figure 7. - Analytical and smoothed finite difference solutions for y = -0, 25,
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